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Abstract 

Options prices jump whenever there is a jump in either the price or volatility of the 

underlying asset. High-frequency jump tests are applied to the prices of both futures contracts 

and their options in order to infer the properties of price and volatility jumps. The empirical 

results for FTSE-100 contracts show that jumps in price and jumps in volatility are, firstly, 

smaller than those assumed or estimated in previous research and, secondly, do not occur 

independently. The price jump risk premium is shown to be a more important factor than the 

volatility jump risk premium. Monte Carlo methods confirm that our empirical jump 

detection methods are reliable for a selection of jump-diffusion processes.  
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1 Introduction 

 

Over the past few decades, stock market jumps have posed a great challenge to financial 

models and options pricing models. Empirical studies have clearly shown that stock market 

returns do not simply follow a normal distribution. Researchers have expended effort to build 

more accurate models for describing the largest market movements.Merton (1976) evaluated 

options for jumps in underlying asset returns. Researchers have subsequently considered 

jumps in prices. Duffie, Pan, and Singleton (2000) proposed an options pricing method for a 

general affine jump-diffusion model. They showed that simultaneous jumps in price and 

volatility could describe the implied volatility smirk. Eraker, Johannes, and Polson (2003) 

constructed  stochastic volatility models, and found strong evidence of jumps in both price 

and volatility (also see Chernov, Gallant, Ghysels, and Tauchen, CGGT, 2003). These papers 

revealed that jumps in prices were critical, but the importance of jumps in volatility remains 

unclear. If there is no risk premium in affine models, then it is assumed that all price jump 

risks are diversifiable. However,research has shown that there exist idiosyncratic jumps and 

systematic jumps for which risk is non-diversifiable (Bollerslev, Law, and Tauchen, 2008). 

Therefore, in options pricing models,the associated risk premia are critical.  

 

Researchers have found critical results pertaining to the associated jump risk premia. Pan 

(2002) used the generalised method of moments to estimate the parameters of affine jump-

diffusion models. She identifiedprice jumps, and estimated the price jump risk premium. 

Broadie, Chernov,and Johannes (2007) usedStandard & Poor (S&P) 500 futures and options 

prices from 1987 to 2003 toconstructan affine jump-diffusion model;they also considered 

real-world and risk-neutral measurements, and indicated that the consideration of risk premia 

associated with jumps may improve options pricing models. Because jumps cannot be hedged 

as diffusive elements, the existence of jump risk premia has a crucial consequence. Investors 

facing a jump risk that cannot be hedgedrequest a premium to compensate for their 

investment risk. Broadie, Chernov,and Johannes (2007)estimated the price jump risk 

premium to beapproximately 3%.  

 

Carr and Wu (2009) used the difference between the realised variance and the variance swap 

rate to determine the variance risk premium. They foundanegative variance risk premium for 
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the S&P 500 indices and the Dow Jones Industrial Average,indicating that investors were 

averse to an increase in volatility, and were willing to pay a premium to hedge against it. 

Furthermore, Bollerslev and Todorov (2011) proposed new extreme value approximations to 

estimate the expected jump tails under real and risk-neutral measures. Their findings 

suggested that the historical equity and variance risk premia may be explained by the 

compensation for jump tail risk.  

 

Thus far, affine models with compound Poisson jumps have been widely used for describing 

the return and volatility processes in financial markets. Todorov and Tauchen (2011) usedthe 

Chicago Board Options Exchange Market Volatility Index (VIX) and S&P 500 futures 

contracts to test the activity level of returns and the VIX process. They concluded that 

jumpdiffusion was suitable for the S&P 500 return process, whereas the VIX index required a 

pure-jump process to capture the frequent jumps in VIX. In their research, the VIX index was 

used as a proxy for the volatility level. The advantage of using VIX data is that they are 

calculated from traded options prices with various strike prices. The options prices are 

sensitive to volatility, and VIX provides more information compared with the underlying 

asset series (Blair, Poon, and Taylor, 2001). However, the VIX index is a measure of the risk-

neutral expectation of future volatility, and it is not an instantaneous volatility measure; VIX 

is a biased estimate of instantaneous volatility. An alternative is to use options prices directly 

to investigate jumps and associated risk premia. We consider affine jump-diffusion modelsto 

extract information from options prices.  

 

In another field, researchers have proposed non-parametric methods for jump detection in 

prices. For high-frequency data, more information can be obtained using these methods. First, 

Barndorff-Nielsen and Shephard (2006) proposed a method for identifying days when jumps 

occur. Andersen, Bollerslev, and Dobrev (ABD; 2007) proposed a method to detect multiple 

jumps over a given trading period, and to obtain the timing of the jumps.  

 

However, attention to finding evidence for jumps in volatility from information on jumps in 

market prices has been scant. We use a jump test to detect jumps in futures and options prices, 

and use the detected jumps to investigate jumps in underlying asset prices, jumps in volatility, 

and related risk premia. The main idea is that, when there is no contemporaneous volatility 

jump, a jump in the (underlying asset) price induces a jump in the call price in the same 
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direction as the underlying asset price and a jump in the put price in the opposite direction. In 

contrast, a jump in volatility induces jumps in the call price and jumps in the put price in the 

same direction, when there is no contemporaneous price jump. Therefore, if there are 

contemporaneous call jumps and put jumps in the same direction, we regard this as evidence 

in favour of independent jumps in volatility. We argue that the assumptions of the ABD test 

are equally applicable to futures and options prices. Consequently, the ABD jump test is used 

to identify jumps in futures and options prices.  

 

However, using this method,we fail to find strong evidence for jumps in volatility. In all the 

jumps detected in options prices,the cases of call jumps and put jumps being in the same 

direction account for only 1%. In addition, this small percentage of jumps may have resulted 

from errors in the data. This negative result leadsto two possible explanations: Either jumps 

in price and jumps in volatility occur contemporaneously, and jumps in price have a greater 

effecton the directions of options jumps than the corresponding jumps in volatility,or there 

are no jumps in volatility. 

 

To evaluate these explanations, the ABD test is used to detect jumps in simulated futures and 

options prices by using affine jump-diffusion models with five scenarios: no price jump and 

no volatility jump; only price jumps; only volatility jumps; independent price jumps and 

volatility jumps; and contemporaneous price jumps and volatility jumps. From a comparison 

between empirical and model-based results, we determine the model that best describes the 

observed jump patterns. Our estimates of the variances of the price jump size and mean 

volatility jump size are fewer than previous estimates (Eraker, Johannes, and Polson, 2003; 

CGGT, 2003; Eraker, 2004). Overall, our findings suggest that there are price jumps and a 

price jump risk premium, that jumps in the price and jumps in volatility are not 

mutuallyindependent,and that the price jump risk premium is a more critical factorcompared 

with the volatility jump risk premium.  

 

2 Detecting Jumps 

2.1 Price Variation 
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We assume the price of an asset follows a semi-martingale process in continuous time. The 

logarithm of the asset price, denoted  , then follows a standard jump-diffusion process, 

which can be represented by the stochastic differential equation. 

               ,                                              (1) 

 

where the drift rate    has locally bounded variation, the volatility process    is positive and 

caglad
1
,    is a standard Wiener process,   counts jumps and   represents the size of any 

jump at timet. The return during an interval of   time units, from time     until time 

tequals       .  

 

We let one time unit equal the duration of trading at a market for one day, from the open until 

the close, and divide it into m time steps. We define a set of m  intraday returns for day 

dby                      . The realized variance and the realized bipower variation for 

day d  are respectively defined by 

         
  

   (2) and 

    
  

      
               

 
   .                                         (3) 

Andersen and Bollerslev (1998), Comte and Renault (1998) and Barndorff-Nielsen and 

Shephard (2001, 2004) showed that these quantities converge as    . The realized 

bipower variation converges to the integrated variance, 

       
   

   

 
,                                                     (4) 

while the realized variance converges to the quadratic variation, which equals the integrated 

variance plus the sum of the squared jumps: 

       
   

   

 
    

 
       .                                        (5) 

  

2.2 Detecting Index Jumps 

 

Intuitively, a return contains a jump if the return is large compared with the variation 

expected when the price follows a diffusion process. A simple implementation of the test 

                                                 

1
A cadlag function, a function defined on real numbers, is right-continuous with left limits everywhere. 
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methodology developed by Andersen, Bollerslev, and Dobrev (2007) identifies an index 

return as containing a jump whenever 

               ,                                                  (6) 

with
mz  determined by the significance level of the hypothesis test and the standard normal 

distribution. This test procedure assumes it is appropriate to estimate the integrated variance 

of an intraday return as the daily variation divided by m , i.e. it is assumed that volatility does 

not change during the day by a substantial amount. ABD try to ensure their evidence for 

jumps is conclusive by selecting a very low significance level. Let   be the daily Type I error 

rate, which is the proportion of days without jumps for which the test procedure claims one or 

more jumps. Then each of the m intraday returns should be tested with a significance level 

  satisfying           . ABD choose        and test 195 two-min returns each 

day, and thus   5.45. 

 

As there are well-documented intraday patterns in volatility, it is natural to modify (6) to 

identify a jump within a return whenever 

               ,                                                   (7) 

with   an estimate of the proportion of the day’s variance which occurs during intraday 

periodj. The ABD test will detect jumps which are sufficiently large. The test will, however, 

fail to detect relatively small jumps and thus it may detect only a small fraction of the jumps 

in a price process (Taylor, 2010).  

 

2.3 Detecting Jumps in Options Prices 

 

The price of an option follows a semi-martingale process whenever the price of the 

underlying asset has the semi-martingale property. Consequently, it is tempting to 

detectjumps in options prices using the methods which have already been successfully 

applied to index levels. 

 

A simple example shows, however, that extra care may be required if the ABD test is applied 

to options prices. When the underlying asset price   follows a geometric Brownian process, 

  

 
        ,                                                           (8) 
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by Ito’s lemma the call price   follows the diffusion process 

  

 
 

 

 
 
  

  
 

  

  
   

 

 
       

        
 

 

  

  
  .                  (9) 

 

There will then be intraday variation in the volatility of call returns, because of the 

multiplicative term
 

 

  

  
. We therefore expect that there will always be more intraday volatility 

variation for percentage change of options prices than for that of the underlying asset. We use 

Monte Carlo methods in Section 3 to decide if the ABD methodology remains viable when it 

is applied to options prices. 

 

2.4 Detecting Jumps in Volatility 

 

The general jump-diffusion specification given by (1) permits jumps in both prices and the 

volatility component   . Our empirical results are for an underlying asset which is a futures 

contract on a stock index. Assuming efficient markets, a jump in the futures price (without a 

contemporaneous volatility jump) will induce all call prices to jump in the same direction as 

the futures price and all put prices to jump in the opposite direction. In contrast, a jump in the 

volatility (without a contemporaneous futures jump) will induce all call and all put prices to 

jump in the same direction. Although theoretical predictions are less precise when both the 

futures price and the volatility jump at the same time, call and put prices will only move in 

the same direction when the volatility jump is large relative to the jump in the futures price. 

 

Whenever the ABD test detects contemporaneous jumps in call and put prices in the same 

direction we will regard this as evidence in favour of a volatility jump. Such evidence may 

beelusive, however, because contemporaneous jumps in the futures price may hide the impact 

of volatility jumps. 

 

3 Monte Carlo Results 

 

We use Monte Carlo methods to assess the effective size and power of the ABD test for a 

selection of stochastic processes. The processes are defined in Sections 3.1 to 3.2 and the 

results are discussed in Sections 3.3. 
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Effective size is defined as the proportion of simulated periods containing no price jumps for 

which the test falsely claims a price jump has occurred. Effective power is the proportion 

containing a price jump for which the test correctly asserts a jump has occurred. A jump in 

volatility, J.V., leads to a jump in option returns, while a jump in (underlying asset) price, J.P., 

causes both a jump in the asset return and a jump in the option return. The step effective size,  

  , and effective power,    , of the ABD test for price and option are listed as follow:      

 

 (underlying asset) Price Options 

                                         

                     
 

                                                   

                              
 

                                         

                     
 

                                                       

                                 
 

 

When m prices a day are simulated, the estimated size     is converted to the equivalent daily 

figure    given by:              . All these definitions are identical for simulated 

underlying asset prices and options prices. 

 

3.1 Affine Stochastic Processes 

 

The general form of the simulated affine stochastic processes for the logarithms of prices is 

as follows: 

                                  ,                         (10) 

                                                            (11) 

 

with correlation   between the Wiener processes    and   . The two jump processes, 

  
 
and  

 , are Poisson processes which are independent of the Wiener processes. The four 

constants in (10) are the risk-free rater, the equity risk premium , the price jump intensity    

and the drift compensator             
      for which        

               is a 

martingale process. 

 

We consider seven special cases: 



9 

 

1. Geometric Brownian motion, when    is constant and the jump components are 

removed. 

2. The jump-diffusion model of Merton (1976), for which     is again constant. 

3. The stochastic volatility model of Heston (1993), defined by removing both jump 

components. The variance    of this SV model mean-reverts towards the level   at a 

rate determined byk. 

4. The SVJP model which includes jumps in prices alone, as in Bates (1996). The jumps 

are normally distributed, with mean   and variance  .  

5. The SVJV model which has jumps in volatility alone. These jumps follow a Poisson 

process with intensity    and their sizes are exponentially distributed with mean  . 

This model, like Cases 6 and 7, is a special case of a general specification in Duffie, 

Pan, and Singleton (2000).  

6. The SVIJ model containing independent jump processes, with intensities and jump 

size distributions as for Cases 4 and 5. 

7. The SVCJ model having contemporaneous jumps in price and volatility, so  
    

 . 

The volatility jump properties remain as for Cases 5 and 6, but the conditional means 

of the price jumps are now a linear function of the volatility jumps; the conditional 

distributions are defined by  
 
   

         
     . The drift compensator is    

              for Cases 4 and 6, and it equals                   

           for Case 7. 

 

3.2 Risk-Neutral Affine Processes 

 

The simulated prices of options are obtained by assuming the risk-neutral dynamics of the 

underlying asset have the same affine structure as the real-world processes defined above. As 

in Broadie, Chernov, and Johannes (2007), four risk premia terms are created by changing the 

real-world parameters          to risk-neutral parameters            . The differences    , 

    ,      ,     are respectively labelled the risk premia for the mean price jump, the 

volatility of price jumps, the mean volatility jump and the diffusive volatility. The first two 

differences together are referred as price jump risk premia. All the remaining parameters, 

namely ,  , ,  ,   and , are identical for the real-world and risk-neutral simulations. The 
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jump timing risk is not considered, under assumptions also made by Pan (2002) and Broadie, 

Chernov, and Johannes (2007).  

 

Exact options prices can be obtained by inverting characteristic functions.We use Duffie, Pan, 

and Singleton (2000) asset pricing formula to calculate options prices. 

 

3.3 Results 

 

This section verifies that it is reasonable to applythe ABD jump detection test on index and 

options pricesafter the following stochastic processes. The ABD test is usually effective, and 

it iscapable of detecting jumps if the true price processes follow these theoretical models.  

 

In all of the simulations, we consider that m=144;for a trading day of 504 min,this value 

corresponds to the calculation of returns every 3.5 min. 

3.3.1 Geometric Brownian motion model 

 

The effective sizesobtained from a Monte Carlo study of the geometric Brownian motion 

modelfor200,000 simulation days are listed in Table 4. When theannualvolatility  is set to 

10%, 14%, and 22%,different levels for low volatility, full sample, and high volatility periods, 

respectively, as shown by the estimated values listed in Table 9, the daily effective sizes ofthe 

options returns are approximately 0.03% and 0.006% at the 0.01% and 0.001% jump test 

levels, respectively. The effective sizes of futures are low, but slightly larger than the nominal 

significance levels of the ABD jump test. This is consistent with the estimates made by 

Andersen, Bollerslev, and Dobrev (2007). The effective size of the call option does not 

increase when the diffusion term of the call return increases and the call prices become more 

volatile.Specifically, the effective sizedoes not increase for more volatile, out-of-the-money 

options prices. Regarding the effective size, the ABD test offersa good performance across 

periods.  

 

3.3.2 Stochastic volatility model  
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This section presents a discussion on the simulation of the affine jump-diffusion models. The 

parameters considered in the simulationare shown in panel A of Table 9. Panel Aof Table 

5presents the effective sizes of the SV model for the index and for options across various 

moneyness levels. All the effective sizes in the full sample period are slightly greater than 

those for constant volatility (Table 4), which remain within acceptable levels. 

 

In panel B of Table 5, the effective sizes for the SVJP model are shown to be often less than 

the set significance levels. The effective powers of the index tests and options tests are low 

and almost identical, implying that only a small fraction of the jumps were identified.
2
In 

addition, the number of correctly asserted jumps in the index is nearly equal to the number of 

detected jumps in the options.  

 

Panel C of Table5 shows the performance of the ABD test for the SVJV model. The effective 

sizes of the options and futures obtained from the tests are higher than those presented in the 

other tables. However, the test has a low effective power. The out-of-the-money options are 

sensitive to jumps in volatility, and their effective power is relatively high.  

 

A comparison ofpanel A of Table 6 with panel D of Table 5 shows that the ABD jump test 

performs slightly better for the SVCJ model compared with the performanceof the SVIJ 

model. The contemporaneous jumps magnify spikes in futures returns, and increase the 

magnitudes of options returns. Therefore, the ABD test can detect contemporaneous jumps. 

The effective sizes of the two models are typically less than the assumed levels. 

 

4 Data 

 

This section provides an explanation into how the optimal sampling frequency is determined 

and how data descriptive statistics are provided. 

 

                                                 

2
Theeffective power of the test is such that the test detects approximately 0.8% of the index jump at the 0.001% 

level. Because  =2,300, one simulated jump is detected every 14 days, which is similar to the frequency 

reported by Andersen, Bollerslev, and Dobrev (2007). 
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4.1 The Sampling-Frequency of Data 

 

The data consists of FTSE 100 high-frequency option observations and futures prices and are 

collected from Euronext. The maturity date of options is the third Friday of the month. The 

maturity date of futures is the third Friday of each quarter. The trading hours of options are 

from 8:00to 16:30, while for futures they are from 8:00 to 17:30. For reasons given latter, our 

sampling hour is from 8:06 to 16:30 and the sampling period is from January 4, 2005 to 

December 31, 2009, a total of 1,262 trading days.  

 

Three time series of options prices are studied: 1) Matm- At-the-money options prices with 

amonthly cycle of expiration dates, 2) Motm- out-of-the-money options prices with a 

monthly cycle of expiration dates, 3) Qatm- At-the-money options prices with a quarterly 

cycle of expiration date. At-the-money is defined by a daily fixed strike price which is the 

closest to the daily mid-index range. The option expiry date is changed at 5 trading days to 

maturity. 

 

The days without ask and bid prices or with missing data are deleted. Generally, a longer 

maturity option has lower liquidity.
3
 The options with quarterly changed expiration have 

more missing data than the options with monthly changed expiration. There are more 

violations of put-call parity in the out-of-the-money options prices. The data with 

seriousviolations
4
 are deleted. For example, the call prices are highly volatile within one hour 

around the July 7, 2005 London bombings event. For each series of options prices, there are 

808 daily samples available, as shown in Table 1. The sample period is divided into the 

lowvolatility period from Jan. 2005 to Jun. 2007 and the high volatility period from Jul. 2007 

to Dec. 2009. There are 369 and 439 sample days in the low and high volatility periods, 

respectively. 

 

To choose the sample period and frequency, we take into account the following aspects: 

                                                 

3
The liquidity of options does not always increase with closeness to maturity. For example, when the closest-to-

maturity options expire within a few days, investors may switch to invest in other maturity options.   
4
 A serious violation of put-call parity is defined as an unusual spike in the prices of calls or puts, larger than 

one-third of the daily call or put price range. 
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1. To obtain more information, it is better to extract the data from as wide a period of trading 

time as possible.  

2. The futures and options prices should be extracted from the same period of time. 

3. In option data, we avoid time intervals which end at specific times, especially 13:30 and 

15:00. As this technique reduces noise and realized variance, we can more accurately detect 

jumps.  

 

After considering the above principles, we extract all the data during the intraday period 

between 8:06 and 16:30, a total of 504 min. To illustrate why we avoid at 13:30 and 15:00, 

Figure 1A presents the monthly out-of-the-money options prices with 0.25-min frequency on 

January 13, 2006. It is obvious that the spikes in put prices at 13:30 and 15:00 violate put-call 

parity. Figure 1D shows the options prices with 5-min frequency from 8:10 to 16:30 and 

shows that the spikes are then selected. In contrast, Figure 1C presents the options prices with 

3.5-min frequency with a sample period from 8:06 to 16:30. No time interval with the 3.5-

min frequency ends at exactly 13:30 or 15:00 and there are no spikes shown. After using a 

3.5-min frequency instead of 5-min frequency, we can reduce the number of 

unsatisfactorydays containing unusual price spikes within the selected data from fifty-four to 

fifteen out of the 808 sample days. 

 

Figure 2 illustrates the relationship between frequency and mean realized variance.
5
 The steps 

of the first three frequencies – 0.25-, 0.5-, and 1-min – include 13:30 and 15:00, while the 

steps of the other frequencies are not at these specific times. The mean realized variances 

across various frequencies are used to find the best trade-off point that maximises the benefit 

from obtaining additional information through more frequent sampling and minimises the 

costs of microstructure noise and bid-ask bounce effects. As frequency decreases, the 

meanrealized variance of calls and puts decreases and converges to a stable value generally at 

a 3.5-min frequency.  The mean realized variancesof calls and puts with 3.5-min frequency 

during the period between 8:06 and 18:30 are 0.0964 and 0.0797, which are less than their 

counterparties during the period between 8:10 and 16:30(see Figure 3A): 0.1174 and 0.0872 

of call and put with 2-min frequency, 0.1118 and 0.0868 of call and put with 5-min frequency, 

                                                 

5
 The mean realized variance is defined as 

 

 
      

  
   

 
    when m intraday returns     are available for each of 

the Tdays. 
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respectively. This suggests that a 3.5-min frequency is optimal. As Figure 2D shows, the 

futures mean realized variances are almost the same across frequencies.  

 

Figure 4 shows and defines the 3.5-min frequency variance proportions of futures and 

optionsprices. The timings of spikes are similar between futures and options prices. There are 

spikes at the beginning and end of the trading period and there are high values at 13:30 and 

15:00. Dealers are more active at the beginning of the futures and option markets and the 

major peak at 13:30 reflects the announcement of the most important US macro news at 8:30 

local time. Also the variance proportions are generally higher after the US markets open at 

14:30. These results are consistent with the findings of Areal and Taylor (2002) for FTSE 100 

futures returns. The peak at 15:00 may reflect the announcement of US macro news as well.
6
 

For instance, Gilbert, Kogan, Lochstoer, and Ozyildirim (2012) found that the U.S. Index 

ofLeading Economic Indicators announced at 10:00, corresponding to 15:00 local time, 

causes temporary and significant mispricing of the S&P 500 index and Treasury bonds. 

 

4.2 Descriptive Statistics 

 

The futures panel in Table 2 shows that the intraday returns      have a fat-tail distribution, 

whose kurtosis is higher than for daily returns  . The standardized daily return        

         approximately follows a normal distribution,  (0,1)and where    
       

  
    is the 

realized variance on dayd. The kurtosis of   is less than that of daily returns  . 

 

The mean of daily futures volatility     is 0.0088, corresponding to an annual volatility of 

13.97%. Moreover, the daily volatility series has a fat right tail. Referring to the realized 

logarithmic standard deviation, log     , the skewness is reduced to 0.34, compared to 1.57 

for the realized volatility    . This is similar to the result of Andersen, Bollerslev, Diebold, 

and  Ebens (2001).  

 

                                                 

6
Deleze and Hussain (2013) showed most of the U.S. macro announcements to be either at 13:30 or 15:00 

Greenwich Mean Time. 
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In the call and put panels, it is shown that the distribution of    also is near to a normal 

distribution. The  -values for the Jarque and Bera test are 47%, 50% and 6% for futures, 

calls and puts, respectively. Referring next to   normality test,
7
for log      the  -value for 

calls and puts are larger than those of    . In Table 3, the  -values of the test across futures 

and options for individual contracts are generally larger than 5%, which shows the 

distribution of the logarithm of realized volatility is generally near to a normal distribution. 

 

4.3Empirical Results 

 

To ensure that the evidence for the existence of jumps is highly probable, we chose low daily 

significance levels ( ) from 1% to 0.001%. Table 7 shows that the number of detected jumps 

in futures almost doubles when the significance level is multiplied by 10. Moreover, the 

number of detected jumps in options is greater than that in futures, implying that factors other 

than jumps in price drive the jumps in options prices. Section 5.2.2 shows that this doubling 

of detected jumps occurs when index prices are simulated with stochastic volatility and jumps 

in price. 

 

We divide the jumps into eight jump combinations.This classificationindicatesthetypes of 

price jumps occurringconcurrently. For example, the C jump combination consists ofonly the 

detected jumps in call prices. The CP jump combination contains only the contemporaneous 

detected jumps in call and put. The FC jump combination involvesonly the contemporaneous 

detected jumps in futures and call prices. The P+ and P– jump combinationsconsistsof the 

detected positive and negativejumpsin put prices, respectively.The number of positive 

detected put jumps increases with the volatility jump size.The FCP jump combination 

represents the contemporaneous detected jumps in futures, calland put prices. The most 

common combination is FCP, which accounts for 25% of the combinations. This percentage 

increaseswiththe impact of the jumps in price. The percentages of C, Pand CP jump 

                                                 

7
 The Jarque and Bera test statistic is   

 

 
     

       

 
 , where Nis the sample size,   is the sample skewness, 

and    is the sample kurtosis. The null hypothesis that a series has a normal distribution is rejected if the  -value 

of the   statistic is less than the significance level. When the null is true, the asymptotic distribution of 

  is     . 
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combinations are approximately 22%, 25%and 11%, respectively. These percentages 

increases with the impact of the jumps in volatility, as shown in Sections 5.2.2 and 5.2.3. 

 

Panel Bof Table 7 shows the direction of jumps for the CP and FCP jump combinations. In 

almost all cases, the directions of call jumps and put jumps are different, implying that the 

impact of jumps in price dominated over that of jumps in volatility, or that there is no jump in 

volatility. In the CP jump combinations, less than 1% of cases are ones in which call jumps 

and put jumpsoccurr contemporaneouslyand in the same direction. In the example shown in 

Figure 5A, the detected call jump and put jump are both negative at the 0.1% significance 

level at 14:52 on September 15, 2006. Although these changes inthe call and put prices 

occurin the same direction, they may result from a data problem. For instance, an 

unreasonable ask or bidprice leads to a large price change, followed by an almost equivalent 

opposite price change within a short period. Therefore, this evidence is neithersufficiently 

strong nor sufficiently sound to show the existence of an independent jump in volatility. 

 

We consider three extensions to confirm the robustness of our results. We consider at-the-

money options with monthly and quarterly maturities as well as 5-min frequency data. The 

sample period is divided into low- and high-volatility periods. Table 8shows the empirical 

results for the detected jumps for these extensions. The numbers of detected jumps for the 

out-of-the-money option are larger than those for at-the-money options, as shown in panels 

A1 and A2. This implies that the out-of-the-money option is more sensitive to the impact of 

events or news announcements. When the at-the-money option and futures expire quarterly, 

only few detected call and put jumps are in the same direction.  

 

Whenthe variance proportions differ in various periods, the detected jumps may differ by 

period.Compared with the low-volatility period, the high-volatility period has relatively high 

percentages of the CP and FCP jump combinations, and relatively lowpercentages of the C 

and P jump combinations.The percentages of P+ and FCP(－－+) are usually close to those 

of P– and FCP(++－). The number of detected jumps in futures nearly doubledwhen the 

significance level is multiplied by 10. These characteristics ofthe empirical results for the3.5-

min frequency data are similar to those for the 5-min frequency data,and we typically detect 
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more jumps for the 3.5-min frequency data.We simulate the model-based results with the 3.5-

min frequency data, and this simulation is discussed in the following section. 

 

For the FCP jump combinations, the directions of futures jumps and call jumps are always the 

same, whereas the directions of put jumps are always opposite to those of futures jumps. 

There are two possible explanations for this observation: First, jumps in the (underlying asset) 

price exists, whereas jumps in volatility does not.Another explanation is that jumps in price 

and in volatility occurrconcurrently, and the impact of jumps in price on options dominats 

over that of jumps in volatility. The results for the CP and FCP jump combinations do not 

strongly support the existence of jumps in volatility.  

 

5 Model-Based Results 

 

The results obtained from the empirical data show no evidence for the existence of 

independent volatility jumps. Afterward, we attempt to recreate the observed jump statistics 

by using possible theoretical models. The main purpose is to examinewhether the observed 

patterns can be explained by contemporaneous jumps in price and volatility or simply by 

jumps in price. 

 

An ABD test is conducted to detect jumps in theoretical futures and options pricesobtained 

from simulated affine jump-diffusion models. Section 5.1 provides an explanation into the 

selected parameters of the different models. Section 5.2 presentsadditional information 

gleaned from a comparison between the empirical results and the model-based results. 

 

5.1 Parameter Selection for Models 

 

Previous researchers have used various econometric methods to estimate the parameters of 

affine jump-diffusion models. Eraker, Johannes,and Polson (2003) performed likelihood-

based estimation with Markov chain Monte Carlo methods.
8
CGGT (2003) used an efficient 

                                                 

8
From the detected jumps, we extract information on the range of jump combinations. It is computationally 

difficult to apply these methods to obtain a reasonable range of  jump combinations.  
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method of moments. Pan (2002) used an implied-state generalised method of moments. 

Broadie, Chernov,and Johannes (2007) minimisedthe differences between model-based and 

market-based implied volatility. In this study, we aim to minimise the differences between 

empirical results and model-based results for the detected jump numbers and the percentages 

of jump combinations. A deep out-of-the-money option is used to isolate the jump risk and to 

estimate the parameters of the affine jump-diffusion stochastic volatility models by Bates 

(2000), Pan (2002) and Eraker (2004). For high liquidity and similarity of empirical results 

with other sets of options, we focuss on the results for the out-of-the-money option with 

monthly expiration. Therefore, in the simulations, we allow the expiration time to decrease 

repeatedly from 25 to 6 trading days.
9
 

 

Table 9 lists the values of the estimated and selected parametersfor different periods. The 

parameters        , and  are the medians of monthly estimated parametersby minimising the 

squared errors between the theoretical prices by Duffie, Pan, and Singleton (2000)and the 7-

min frequency out-of-money option prices during the period between 8:06 and 16:30.Our 

estimated parameters are relatively close to those obtained by Pan (2002), as shown inpanel B 

of Table 9.  

 

Panel A lists the values of parameters used to simulate the model-based results presented in 

Tables 10–13. Our annual equity risk premium is set to approximately6%, 12% and 18%over 

periods, similar to the study by Pan(2002).
10

The diffusive volatility annualised risk 

premium       is set as -0.25, similar to the value set in the estimation by Chernov and 

Ghysels (2000). In the SVCJ model forthe full sample period,  and   are 7.25 and 7, 

respectively;these values corresponds to half-life values of 24.1(=252        ) and 25 

trading days, respectively. The initial variance levels (   )are 0.01, 0.02and 0.05, 

corresponding to 10%, 14% and 22% annual volatility for the different periods. The daily 

initial futures are set as   =5475. The riskrate is the three-month Euro interest rate, which is 

                                                 

9
 Following Dumas, Fleming, and Whaley (1998), we exclude options with a maturity time of less than 6 days. 

Because the time premium of options with short maturity is relatively small, options prices are sensitive to non-

synchronous options prices and other measurement errors. 
10

Our estimatedprice jump risk premium is similar to thatby Pan(2002), in whose study the jump risk 

premiumranged from approximately 13% to 21%, as the volatilities ranged from approximately 10% to 22%. 

Broadie, Chernov, and Johannes (2007) usedthe S&P 500 futures options from 1987 to 2003. They estimated 

the SVJ mean price jump risk premiumto be in the approximate range of 3% to 6%, and the SVCJ mean price 

jump risk premiumto range from 2% to 4%. 
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approximately 0.5% to 5.3% during the sample period. Consequently, we set the risk-freerate 

as r=3%. 

 

The jump-related parameters are selected to fit the ideal simulation results for the jump 

combination. In our simulation involving the SVCJ model, to ensure thatthe percentages of 

P+ and FCP(－－+) are close to those of P– and FCP(++－), we set to be equal to -0.01, 

which is different from the value used in the estimations of Eraker (2004) (-0.46) and Pan 

(2002) (approximately -0.5). The regression slope between jump sizes,  , is approximately -

0.06, similar to the value obtained byEraker (2004) and Eraker, Johannes, and Polson (2003). 

The standard deviations of the price jump sizes,  , and the mean of the volatility jump size, 

  , in our simulation are smaller than our estimations as well as the values obtained by 

Pan(2002), Eraker,Johannes, and Polson (2003), CGGT (2003), Eraker (2004) and Wang 

(2009). The annual jumpintensity in our simulation ranges from 2,000 to 3,000, which is 

apparently larger than that estimated in previous studies.  

 

5.2 Model Results 

 

For this section, we compare the model-based results with empirical results, and discuss 

information on jumps in price, jumps in volatility, and related risk premia. 

 

5.2.1 Stochastic volatility 

 

In this model, there is no jump component in the return and variance processes. Panel Aof 

Table 10 shows that the ABD test falsely claimedapproximately 12 futures and 13 options 

jumps every 808 days at the 1% daily significance level. The directions of all the call jumps 

and put jumps in the FCP jump combinationdiffer, but the small number of jumps observed 

eliminats this model as a candidate model that describes futures observations satisfactorily. 

 

5.2.2 Stochastic volatility with jump in price 
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In this model, there are jump components only in the return process. In panel B3 of Table 10, 

there is no price risk premium. The number of detected jumps in options is less than that 

observed empirically. The percentages of F, FC, and FP jump combinations are relatively 

high. As expected, whenonly prices can jump, in most cases, jumps in futures and in options 

occur concurrently. The percentage of CP jump combinations is close to zero, which is not 

the case for the empirical results. The percentages of C and P jump combinations arelow. In a 

few cases, the observed jumps in options do not occur contemporaneouslywith jumps in 

futures.  

 

If the average magnitudes of risk-neutral price jumps are larger than those of real-world price 

jumps,accordingly, the CP(+ － ) and CP( － +) jump combinationsare expected to be 

large.Panel B2 of Table 10shows that,if we consider the price jump risk premia (     

 and      ), the percentages of C, P, and CP jump combinations increase to a relatively 

reasonable level, suggesting that jumps in price and price jump risk premia are critical for 

explaining the range of jump combinations. However, the percentage of F jump 

combinationsis lower than that obtained from the empirical results, whereas the percentage of 

FCP jump combination is higher than that obtained from the empirical results.  

 

By considering Pan’s parameter estimates, we attempt to determine the parameter estimates 

that canyield the observed results. Panel B4 shows the simulation results for the parameters 

estimated by Pan (2002). The jump intensity may clearly have been underestimated, because 

the numbers of detected jumps are noticeably low. In addition, the jump size forprice may 

have been overestimated, because the percentage of the FCP jump combination is high, and 

the number of detected jumps does not doublewhen the significance level is multiplied by 10. 

This relationshipis further illustratedin Case 3 of Table 13. 

 

5.2.3 Stochastic volatility with jumps in volatility 

 

In this model, there are jump components only in the variance process, and therefore, all 

jumps should be observed in the options prices. Inpanel A3 of Table 11, the volatility jump 

risk premium is not considered. As expected, the results reveal that the numbers of detected 

jumps in options are substantially greater than those in futures. The directions of both call 
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jumps and put jumps are positive in the CP combinations,and the percentage of P+ jump 

combinations isapparently higher than that of P– jump combinations.These results reflect 

theexistence of only positive jumps in volatility in the model,and therefore,this model 

isclearly not viable for the period we consider. 

 

If there existsthe volatility risk premium, the average magnitudes of risk-neutral volatility 

jumps are larger than those of real-world volatility jumps. In our simulation, the volatility risk 

premium is small. Panel A2 of Table 11 shows the results obtained by considering the jump 

volatility risk premium;specifically, the number of put options jumps is shown to have 

increased slightly. Overall, the relatively large percentages of P+ and CP(++) jump 

combinations observed eliminate this modelas a possible model. 

 

5.2.4 Stochastic volatility with independent jumps in price and in volatility 

 

Similar to the case of the model considering only volatility jumps, we do not expect this 

model to explain the empirical results,becauseindependent jumps imply that thejumps in the 

call and put prices occur in the same direction.In panel B2 of Table 11, the percentages of P 

and F jump combinations are less than those obtained from the empirical results, whereas the 

percentage of FCP jump combinationsis higher than that determined from the empirical 

results. This observation suggests that jumps in price and in volatility do not occur 

independently.  

 

5.2.5 Stochastic volatility with contemporaneous jumps in price and in volatility 

 

We begin by considering ourestimatedparametersinpanel B of Table 9,and then attempt to 

obtainthesimulation results by usingthe parameters estimated from the affine jump-diffusion 

models by Duffie, Pan,and Singleton (2000).Panel A6 of Table 12 shows the simulation 

results obtained usingour estimated parameters.The numbers of detected jumps areapparently 

low,indicating that the jump intensity may have been underestimated. Moreover, the mean 

jump size of volatility may have been overestimated, because the directions of call jumps and 

put jumps are nearly identical in the CP jump combinations. In the empirical results, this 

similarity in directions is rarely observed, if at all. Finally, unlike the empirical results, the 
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number of detected jumps in futures does not doublewhen the significance level is multiplied 

by 10. 

 

Panel A5 of Table 12 shows the model results with no price jump premium and no volatility 

jump risk premium. The number of jumps in futures is close to that determined from the 

empirical results, whereas that of jumps in options is not as high as that obtained from the 

empirical results.The increaseinthe jump sizes of volatility in real- and risk-neutral worlds 

leads toan increase in the number of positive detected put jumpsand a decrease in the number 

of detected call jumps, and therefore, this model is not viable (see Case 5 of Table 13). 

 

To obtain the results shown in panel A4 of Table 12, only the volatility jump risk premium is 

considered, andthe results are similar to the panel A5 results (which are obtained without 

considering any premium).An increase in volatility jump risk premium leads to relatively 

high percentages of P+ and CP++;therefore, this model is not viable (see Case 8 of Table 13). 

In A3, when the price jump risk premium is considered, the number of CP(+－) and CP(－+ ) 

jump combinations increases, and the number of CP, FC, and FP jump combinations reaches 

reasonable levels. Compared with panel A4, the number of options jumps and the range of 

jump combinations are relatively reasonable in panel A3, suggesting that the price jump risk 

premium is a more critical factorcompared with the volatility jump risk premium.  

 

Finally, panel A2 of Table 12 shows the results obtainedwhen both price jump risk premium 

and volatility jump risk premium are considered. This model provides more reasonable 

results compared with SVJV and SVIJ, suggesting that jumps in price and price jump 

premiumare both critical factors, and that jumps in price and in volatility donot occur 

independently. The number of expected jumps per yearexceeds 2,000 in our sample periods, 

which is higher than the value of 1.7, asestimated byCGGT (2003), and our estimation of 

0.38 (see panel B of Table 9). Our selected price jump sizes exhibitsa normal distribution, 

with a mean of -1.1e-4 and a standard deviation of 15.2e-4 for the full sample period. The 

average price jump size is smaller than those of CGGT (2003) and our estimations. The 

selected average volatility jump (i.e. 0.04e-4)is smaller than that of CGGT (i.e. 181e-4; 2003) 

and our estimations. The selected annual price jump risk premium is11.4%, which is close to 

that by Pan(2002). 
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5.3 SVCJ Model Results with Estimated Parameters 

 

This section shows the relationship between a change in the selected parameters and a change 

in the number of jump combinations.Panel A2 of Table 13 shows the SVCJ model results for 

the simulation parameters presented in panel A of Table 9. We change one or two selected 

parameters,and observe the jump combinations in Cases1–8.  

 

Case 1: A decrease inthe correlation   between Weiner processes leads to an increase inthe 

number of positive detected call jumps and a decrease inthe number of detected put 

jumps. 

Case 2: A decrease inthe mean price jump in the real and risk-neutral worldsleads toa larger 

number of negative detected jumps in futures, negative detected call jumps, and 

positive detected put jumps. 

Case 3: This casedemonstrates the results of an increase inthe standard deviation of jumps,  , 

inthe real and risk-neutral worlds.A large price jump leads toa high percentageof FCP 

jump combinations.The number of detected jumps does not doublewhen the 

significance level is multiplied by 10. 

Case 4: This case shows the result of a decrease inthecorrelation between volatility jumps and 

price jumps,  .The percentages of P+ and FCP( －－ +) jump combinations 

increaseslightly. 

Case 5: An increase in volatility jump size in the real- and risk-neutral worlds results in more 

positive detected put jumps and fewer detected futures jumps and call jumps. The 

percentages of P+ and FCP(－－+) jump combinations are higher than those of P– 

and FCP(++－). 

Case 6: A decrease inthemean risk-neutral price jump leads to more positive detected put 

jumps. Unlikein Case 2, in this case, the number of detected futures jumps is 

unchanged, and the number of detected options jumps decreases. 

Case 7: An increase inthe risk-neutral standard deviation of price jumps leads to an increase 

in price jump size in the risk-neutral world. The number of detected optionsjumps 

increases,and the percentages of CP+－  and CP–+ jump combinations increase 

markedly, with a small difference between the percentages of the two combinations.  
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Case 8: An increase in risk-neutral volatility jumps, or in the volatility jump risk premium, 

leads to an increase inpositivedetected options jumps; the percentages of C+, P+, and 

CP++ jump combinations increase. 

 

In brief, the percentage of P+ jump combinations is greater than that of P–jump combinations 

in Cases2, 4, 5, 6and 8,because the risk-neutral return of futures is fatter in the left tail. The 

percentages of the P+ and P– jump combinations determined from the empirical results are 

similar. Furthermore,Cases 6 and 7 are related to the price jump risk premium, and Case 8 is 

related to the volatility jump risk premium. 

 

6 Conclusions 

We develope a novel methodfor identifying the presence of volatility jumps; that is, by 

detecting jumps in options prices. Intuitively, if there are volatility jumps, and there is no 

contemporaneous price jump, then the call and put options pricesshowing jumps in the same 

direction should be observed. Our empirical results donot provide any evidence for volatility 

jumps, and we barely detectedany jumps of the same sign in options prices, almost ruling out 

the idea of independent volatility jumps.  

 

However, volatility jumps may have occurred contemporaneously with underlying asset 

jumps. To test this possibility, we consider models involving only price jumps (SVJP) and 

thoseinvolving contemporaneous price and volatility jumps (SVCJ). The SVCJ model results 

revealthat jumps in price and the price jump risk premium provide a reasonable explanation 

of the observed jump patterns. Moreover, the SVCJ model results are superior to the SVIJ 

model results,suggestingthat jumps in price and in volatility donot occur independently. This 

is consistent with the results obtained by Todorov and Tauchen (2010) and Duffie, Pan,and 

Singleton (2000). However, our results reveal that the standard deviations of the price jump 

size and mean volatility jump size were far smaller than those obtained in previous 

studies(Eraker, Johannes, and Polson, 2003; CGGT, 2003; Eraker, 2004).
11

 Weshow that the 

                                                 

11
Eraker, Johannes, and Polson (2003) adopted S&P 500 index and Nasdaq 100 index from 1980 to 1999; 

CGGT (2003) used Dow Jones industrial average (DJIA) index from 1953 to 1999; Eraker (2004) used S&P 

500 index  from 1987 to 1996. 
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simulations performed with the parameters estimated from the affine jump-diffusion models 

by Duffie, Pan,and Singleton (2000) may not provide an explanation for jump combinations. 

 

Finally, for our study, wedevelope an intuitive and transparent methodfor identifying jumps 

and risk premia.It links jump identification and parameter estimation by using widely used 

models. From the viewpoint of jumps, it shows the importance of jumps and risk premia.We 

find that the jump intensity is higher than that determined in previous studies (Eraker, 

Johannes, and Polson, 2003; CGGT, 2003; Eraker, 2004). Researchers have recently 

proposed novel pure-jump models (Carr and Wu, 2004; Cartea and Howison, 2009), which 

should be investigated in greater detail. 
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Figure 1 The Motmoptions prices on January 13, 2006 

Motm: out-of-the-money calls (puts) with the strike price, which is ATM strike price plus (minus) 50, and 

monthly changed expiration date. 
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A. Monthly ATM Options 

 

B. Monthly OTM Options 

 

C. Quarterly ATMOptions 

 

D. Futures 

 
Figure 2 The mean realized variance during the period between 8:06 and 16:30 

Motm: out-of-the-money calls (puts) with the strike price, which is ATM strike price plus (minus) 50.The 

options prices in Panels A and B are with monthly changed expiration date and in Panel Care with quarterly 

changed expiration date.The dot-dashed line denotes the mean realized variance of call prices. The solid denotes 

the mean realized variance of put or futures prices.  

 

A. Monthly OTM Options 

 

B. Futures 

 
Figure 3 The mean realized variance during the periodbetween 8:10 and 16:30 

The options prices are out-of-the-money calls (puts) with the strike price, which is ATM strike price plus (minus) 

50, and with monthly changed expiration date. The dot-dashed line denotes the mean realized variance of call 

prices. The solid denotes the mean realized variance of put or futures prices.  
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A.  Monthly ATM 

 

B. Monthly OTM  

 

C. Quarterly ATM 

 

 

Figure 4 The variance proportions of 3.5-min frequency data during the period between 8:06 

and 16:30 

The variance proportion  at the j -th intraday period is defined by Taylor and Xu (1997) and calculated from 

intraday returns     as:    
     

  
   

      
  

   
 
   

. The dashed line denotes the variance proportion of futures; the dot-

dashed line denotes that of call prices; the solid denotes that of put prices.  
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A.

 

B.

 
 

 

Figure 5 Futures and monthly at-the-money options prices with 3.5-min frequency on 

September 15, 2006 

Note: In figure A, the small circle denotes the detected jump 
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Tables 

Table 1 Days included in and excluded from samples 

  Matm Motm Qatm Futures 

Original sample size 2005 243 243 243 251 

2006 154 154 154 252 

2007 238 238 238 253 

2008 225 225 225 253 

2009 247 247 247 253 

Not enough ask and bid prices 2005 32 32 32 10 

2006 19 19 19 17 

2007 69 66 62 2 

2008 37 35 45 1 

2009 9 8 13 2 

Violation of put-call parity or large 

price spike at beginning or end of day 

2005 8 4 8 0 

2006 10 3 9 0 

2007 11 11 14 0 

2008 5 5 6 0 

2009 3 1 4 0 

Sample days in full sample period  808 

Sample days in low volatility period  369 

Sample days in high volatility period  439 

Matm: at-the-money options prices monthly changes in expiration dates on the third Monday. 

Motm: out-of-the-money calls (puts), with the strike price, equal to the ATM strike price plus (minus) 50, and 

monthly changes in expiration date.The calls (puts) is with aboutmoneyness,K/  of 1.01(0.99), at beginning of 

day. 

Qatm:  at-the-money option with quarterly changes in expiration date on the third Monday of the third month. 

The unsatisfactory sample days include the days when there are missing data over twenty minutes, serious 

violations of put-call parity condition, and/or large price spikes at the beginning or end of the day in futures or 

options prices.  
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Table 2 The descriptive statistics of futures and monthly out-of-the-money options returns 

Contract   Mean Median Std. Dev. Kurtosis Skew. p -value 

Futures      1.5E-06 0  0.0009  13.4752  -0.0715  0.10% 

    0.0002  0.0004  0.0100  9.6519  0.2400  0.10% 

    0.0468  0.0638  0.9874  2.9305  -0.0977  47.12% 

     0.0088  0.0069  0.0056  5.8006  1.5725  0.10% 

 log      -4.9094  -4.9717  0.5745  2.3035  0.3442  0.10% 

Call      -1.7E-04 0  0.0257  11.8632  -0.0593  0.10% 

    -0.0235  -0.0091  0.3061  4.2628  -0.1845  0.10% 

    -0.0514  -0.0363  0.9705  2.8565  0.0325  50.00% 

     0.2916  0.2669  0.1068  4.9449  1.2479  0.10% 

 log      -1.2923 -1.3207  0.3416  2.8329  0.2848  0.63% 

Put      -2.0E-04 0  0.0233  12.1799  0.0441  0.10% 

    -0.0317  -0.0477  0.2952  4.2423  0.2142  0.10% 

    -0.1361 -0.1679  1.0346  2.8245  0.1906  6.38% 

     0.2663  0.2470  0.0938  4.4386  1.1007  0.10% 

 log      -1.3798  -1.3982  0.3335  2.6631  0.2359  0.73% 

 

 

Table 3 The -value of the    normal test for the logarithm of each realized volatility across 

each quarter 

log      05 

Q1 

 

Q2 

 

Q3 

 

Q4 

06 

Q1 

 

Q2 

 

Q3 

 

Q4 

07 

Q1 

 

Q2 

 

Q3 

 

Q4 

08 

Q1 

 

Q2 

 

Q3 

 

Q4 

09 

Q1 

 

Q2 

 

Q3 

 

Q4 

Futures 36 12 50 9 44 1 17 32 7 41 6 50 10 40 50 50 50 50 2 32 

Calls 9 12 16 50 10 50 9 26 3 2 50 7 50 3 6 50 14 21 50 7 

Puts 15 9 17 50 13 6 50 50 3 1 50 5 50 2 12 50 11 14 50 20 

The unit is percentage. The     denotes the 3.5-min frequency return series;   denotes daily return series; 

  denotes daily standardized returns,               ;    denotes realized volatility; log      denotes 

logarithm of realized volatility.  The last column is the  -value of the    normality test. The null hypothesis that 

a series has normal distribution is rejected if the  -value of the    statistic is less than the significance level. The 

 -value of the    statistic is in a range of [0.001, 0.5] in matlab jbtest code. When the  -value shows 50%, it 

means more than or equal to 50%. 
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Table 4 The effective size of the ABD test for the geometric Brownian motion model 

 Det. jump in Index  Call Put 
 (%) 1 .1 .01 .001  

 

  

  
 

1 .1 .01 .001 1 .1 .01 .001 

     e.s. 

(%) 

e.s. 

(%) 

e.s. 

(%) 

e.s. 

(%) 

 

 

 

e.s. 

(%) 

e.s. 

(%) 

e.s. 

(%) 

e.s. 

(%) 

 

e.s. 

(%) 

e.s. 

(%) 

e.s. 

(%) 

e.s. 

(%) 

 

A. full sample period 

 1.27 0.15 0.018 0.0025          

1.02     43 1.54 0.20 0.027 0.0055 1.64 0.23 0.032 0.0075 

1      37 1.59 0.21 0.029 0.0055 1.60 0.22 0.033 0.0065 

0.98      29 1.63 0.22 0.028 0.0055 1.57 0.21 0.030 0.0055 

 

B. low volatility period  

 
1.27 0.15 0.018 0.0025          

1.02     62 1.53 0.20 0.026 0.0060 1.64 0.23 0.032 0.0075 

1      49 1.60 0.21 0.029 0.0055 1.60 0.22 0.033 0.0060 

0.98      36 1.64 0.22 0.028 0.0060 1.55 0.20 0.029 0.0055 

 

C. high volatility period  

 
1.27 0.15 0.018 0.0025          

1.02     25 1.56 0.21 0.027 0.0055 1.63 0.23 0.032 0.0075 

1      23 1.59 0.21 0.029 0.0055 1.61 0.22 0.032 0.0065 

0.98      20 1.62 0.22 0.029 0.0050 1.58 0.21 0.032 0.0060 

Note: Annual volatility is equal to 14%, 10%, and 22% in Panel A, B and C panels, respectively. Time to 

maturity repeatedly decreases from 25 to 6 days, total 200,000simulation days. There are 144 steps per day.  is 

the strike price. ‘e.s.’ denotes daily effective size. 

 

  



35 

 

Table 5 The effective size and effective power of the ABD test for the SV,SVJP, SVJV, and 

SVIJ models in full sample period 

  1% 0.1% 0.01% 0.001% 

Price  Moneyness 

(    ) 

Eff. 

size  

Eff. 

power 

Eff. 

size  

Eff. 

power 

Eff. 

size  

Eff. 

power 

Eff. size  Eff. 

power 

A. SVmodel     

Index  1.51 - 0.19 - 0.031 - 0.0055 - 

 1.02 1.58 - 0.23 - 0.043 - 0.0150 - 

Call 1 1.65 - 0.23 - 0.035 - 0.0040 - 

 0.98 1.75 - 0.24 - 0.035 - 0.0050 - 

 1.02 1.73 - 0.25 - 0.038 - 0.0095 - 

Put 1 1.64 - 0.21 - 0.032 - 0.0065 - 

 0.98 1.63 - 0.23 - 0.056 - 0.0195 - 

 

B. SVJP model      

Index  0.63  4.32  0.07  2.36  0.012  1.36  0.0021  0.82  

 1.02 0.70  3.83  0.08  2.08  0.013  1.18  0.0032  0.71  

Call 1 0.71  4.17  0.08  2.29  0.011  1.32  0.0027  0.80  

 0.98 0.76  4.34  0.08  2.40  0.012  1.39  0.0027  0.84  

 1.02 0.76  4.03  0.10  2.20  0.014  1.26  0.0027  0.77  

Put 1 0.74  3.69  0.09  1.99  0.014  1.13  0.0021  0.68  

 0.98 0.76  3.20  0.09  1.69  0.013  0.95  0.0048  0.56  

 

C. SVJV model      

Index  17.89  - 6.43  - 2.597  - 1.1524 - 

 1.02 14.56  1.18  4.96  0.64  1.901  0.36  0.7884  0.22  

Call 1 14.66  1.11  5.01  0.59  1.918  0.33  0.7980  0.20  

 0.98 14.77  1.05  5.06  0.55  1.943  0.30  0.8064  0.18  

 1.02 11.28  4.30  3.57  2.72  1.296  1.81  0.5185  1.25  

Put 1 11.14  4.48  3.51  2.85  1.281  1.91  0.5122  1.33  

 0.98 10.99  4.66  3.46  2.99  1.255  2.02  0.4984  1.40  

D. SVIJ model      

Index  0.58  4.24  0.06  2.30  0.010  1.32  0.0011  0.78  

 1.02 0.66  2.05  0.07  1.11  0.011  0.63  0.0017  0.38  

Call 1 0.67  2.12  0.07  1.14  0.010  0.66  0.0011  0.39  

 0.98 0.70  2.15  0.07  1.16  0.010  0.67  0.0017  0.40  

 1.02 0.71  2.02  0.08  1.09  0.012  0.62  0.0011  0.37  

Put 1 0.69  1.94  0.07  1.04  0.011  0.59  0.0006  0.35  

 0.98 0.67  1.83  0.07  0.97  0.009  0.54  0.0006  0.32  

Note: the unit is percentage. The simulation includes 200,000 days. ‘Eff. size’ denotes daily effective size. ‘Eff. 

power’ denotes effective power. 
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Table 6 The effective size and effective power of the ABD test for the SVCJ model 
  1% 0.1% 0.01% 0.001% 

Price  Moneyness 

 (    ) 

Eff. 

size  

Eff. 

power 

Eff. 

size  

Eff. 

power 

Eff. 

size  

Eff. 

power 

Eff. size  Eff. 

power 

A. full sample period        

Index  0.60  4.88  0.06  2.78  0.011  1.65  0.0021  1.02  

 1.02 0.69  4.23  0.10  2.34  0.022  1.37  0.0085  0.85  

Call 1 0.72  4.60  0.09  2.59  0.010  1.54  0.0011  0.96  

 0.98 0.76  4.81  0.09  2.74  0.010  1.64  0.0011  1.03  

 1.02 0.72  4.72  0.08  2.68  0.016  1.60  0.0027  1.00  

Put 1 0.70  4.45  0.08  2.50  0.012  1.48  0.0021  0.92  

 0.98 0.71  4.01  0.09  2.22  0.017  1.28  0.0059  0.79  

 

B. low volatility period        

Index  0.72  6.05  0.08  3.53  0.016  2.15  0.0042  1.36  

 1.02 1.15  4.27  0.35  2.34  0.188  1.35  0.1320  0.83  

Call 1 0.76  5.36  0.10  3.09  0.012  1.84  0.0011  1.15  

 0.98 0.85  5.95  0.11  3.49  0.018  2.12  0.0037  1.35  

 1.02 0.84  5.81  0.11  3.39  0.020  2.07  0.0053  1.31  

Put 1 0.77  5.02  0.08  2.85  0.014  1.70  0.0021  1.05  

 0.98 1.69  3.84  0.68  2.09  0.403  1.20  0.2833  0.72  

 

C. high volatility period        

Index  0.51  3.16  0.06  1.69  0.006  0.97  0.0011  0.59  

 1.02 0.62  3.04  0.07  1.62  0.010  0.93  0.0016  0.57  

Call 1 0.64  3.10  0.07  1.67  0.011  0.95  0.0011  0.59  

 0.98 0.66  3.14  0.07  1.69  0.012  0.97  0.0016  0.60  

 1.02 0.65  3.10  0.08  1.67  0.010  0.95  0.0005  0.58  

Put 1 0.64  3.05  0.08  1.63  0.008  0.93  0.0005  0.56  

 0.98 0.62  2.97  0.08  1.58  0.008  0.90  0.0011  0.54  

Note: the unit is percentage. The simulation includes 200,000 days. ‘Eff. size’ denotes daily effective size. ‘Eff. 

power’ denotes effective power. 
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Table 7 The jumps in futures and monthly out-of-the-money options prices 

Panel A 

  
(%) 

Numbers of Det. Jumps Numbers of Jump Combinations Total # of 

JumpCom

bina-tions 
F C P C P 

＋ 
P
－ 

CP F FC FP FCP 

1 307 431 423 144 70 73 74 65 35 28 178 667 

0.1 150 217 228 74 41 41 36 21 19 22 88 342 

0.01 79 128 127 47 22 24 21 10 9 9 51 193 

0.001 45 65 90 22 21 19 15 6 4 11 24 122 

    Percentages of Jump Combinations(%)  

1    22 10 11 11 10 5 4 27  

0.1    22 12 12 11 6 6 6 26  

0.01    24 11 12 11 5 5 5 26  

0.001    18 17 16 12 5 3 9 20  

Note: the first 4 rows show the numbers of detected jumps and the numbers of jump combinations across 

different significance levels. In the second column F denotes the numbers of detected jumps in futures. In the 

third column C denotes the number of detected jumps in call. The fifth column C denotes the numbers of 

detected jumps in call and no jumps in futures or put prices. The sixth column P+ denotes the numbers of 

positive detected jumps in put and no jumps in any other price. The seventh column P－ denotes the numbers of 

negative detected jumps in put and no jumps in any other price.  The eighth column CP shows the numbers of 

the contemporaneous detected jumps in call and in put. The ninth column F denotes the numbers of detected 

jumps in futures and no jumps in any other price. The tenth column FC denotes the numbers of 

contemporaneous jumps in futures and call price. The eleventh column FP denotes the numbers of 

contemporaneous jumps in futures and put. The twelfth column FCP shows the numbers of contemporaneous 

jumps in futures, call and put prices. The 5th-8th rows show the percentages of jump combinations which are 

the numbers of specific jump combinations divided by total numbers of jump combinations.  

Panel B The components of the CP and FCP jump combinations 

 Numbers of Jump Combinations Numbers of Jump Combinations 

  
(%) 

CP 

＋－ 

CP 

－＋ 

Sub- 

total CP 

＋＋ 

CP 

－－ 
Sub- 

total 

F C P 
＋＋－ 

F C P 

─ ─ ＋ 
Others 

FCP 

Total # J. 

Combina-

tions 

1 33 38 71 2 1 3 79 99 0 667 

0.1 16 18 34 1 1 2 45 43 0 342 

0.01 11 9 18 0 1 1 24 27 0 193 

0.001 10 5 15 0 0 0 10 14 0 122 

 Percentages of Jump Combinations Percentages of Jump Combination s 

1 4.9  5.7  10.6 0.3  0.1  0.4 11.8  14.8  0  

0.1 4.7  5.3  9.9 0.3  0.3  0.6 13.2  12.6  0  

0.01 5.7  4.7  9.3 0.0  0.5  0.5 12.4  14.0  0  

0.001 8.2  4.1  12.3 0.0  0.0  0.0 8.2  11.5  0 

 
Note: the first four rows are the numbers of jump combination across different significance levels.  The second 

four rows are the percentages of jump combinations which are the numbers of specific jump combinations 

divided by total numbers of jump combinations. In the second column CP(+－) denotes positive detected jumps 

in call but negative detected jumps in put. In the third column CP(－+) denotes negative detected jumps in call 

but positive detected jumps in put. The forth column shows the subtotals of CP(++) and CP(－+). In the fifth 

column  CP(++) denotes positive detected jumps in call and positive detected jumps in put which occur at the 

same time. The seventh column shows the subtotal of CP(++) and CP(－－). The eighth column FCP(++－) 

denotes both positive detected jumps in futures and in call but negative detected jumps in put. The ninth column 

FCP(－－+) denotes both negative detected jumps in futures and in call but positive detected jumps in put.  
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Table 8 Theempirical results of the detected jumps in futures and options prices 

  

(%) 

# of Det. Jumps 

per 808 days 

Percentages of Jump Combinations Percentages of Jump 

Combinations 

F C P C P

+ 

P 

－ 

CP F FC FP FCP CP 

+－ 

CP 

－+ 

CP 

+ + 

CP 

－－ 

Panel A. Full sample period from 2005 to 2009 

A1. 3.5- min frequency futures and options prices with monthly out-of-the-money options prices 

1 306 431 423 22 10 11 11 10 5 4 27 4.9  5.7  0.3 0.1  

0.1 150 217 228 22 12 12 11 6 6 6 26 4.7  5.3  0.3 0.3  

0.01 79 128 127 24 11 12 11 5 5 5 26 5.7  4.7  0.0 0.5  

0.001 45 65 90 18 17 16 12 5 3 9 20 8.2  4.1  0.0 0.0  

A2. 3.5- min frequency futures and options prices with monthly at-the-money options prices 

1 306 402 392 18 8 8 13 10 5 5 33 5.8 7.0 0.2 0.3 

0.1 150 192 194 15 13 6 14 11 6 3 32 7.0 5.9 0.3 0.3 

0.01 79 112 112 17 9 8 16 8 3 4 35 6.4 9.6 0.0 0.0 

0.001 45 71 70 18 8 9 19 4 6 5 31 9.3 9.3 0.0 0.0 

A3. 3.5- min frequency futures and options prices with quarterly at-the-money options prices 

1 306 403 447 17 12 10 14 10 4 6 28 6.0  7.6  0.0 0.2  

0.1 150 206 220 17 14 8 15 10 5 4 28 7.5  7.2  0.0 0.3  

0.01 79 116 131 16 13 12 15 7 4 3 31 6.2  8.4  0.0 0.0  

0.001 45 76 82 18 11 13 18 4 5 5 28 9.0  9.0  0.0 0.0  

A3. 5- minfrequency futures and options prices with monthly out-of-the-money options prices 

1 205 364 356 27 11 15 12 7 5 4 20 6.3 5.4 0.3 0.2 

0.1 101 180 184 22 12 15 16 6 7 4 19 6.4 8.1 0.7 0.4 

0.01 50 105 103 28 13 15 14 7 4 2 16 8.9 4.7 0.6 0.0 

0.001 33 74 55 36 9 12 13 8 5 4 13 4.5 7.3 0.9 0.0 

 

Panel B.Low-volatility period from Jan. 2005 to Jun. 2007 

B1. 3.5- min frequency futures and options prices with monthly out-of-the-money options prices 

1 324 528 519 27 13 14 8 6 7 6 19 3.6 4.1 0.3 0.3 

0.1 149 252 250 31 14 15 6 7 5 6 17 2.5 3.0 0.0 0.0 

0.01 61 136 145 33 17 15 9 3 3 8 12 4.6 4.6 0.0 0.0 

0.001 39 74 94 31 22 15 6 4 1 9 12 4.4 1.5 0.0 0.0 

B2. 5- min frequency futures and options prices with monthly out-of-the-money options prices 

1 206 381 342 31 14 12 8 7 5 3 20 4.4 3.7 0.4 0.0 

0.1 81 208 184 34 13 16 12 1 6 3 15 5.6 5.6 0.7 0.0 

0.01 35 120 107 38 16 16 11 2 2 0 14 3.5 5.9 1.2 0.0 

0.001 20 85 79 40 19 17 10 2 2 0 11 1.6 6.3 1.6 0.0 

 

Panel C.High-volatility period from Jul. 2007 to Dec. 2009 

C1. 3.5- min frequency futures and options prices with monthly out-of-the-money options prices 

1 252 364 396 15 10 9 20 9 2 5 31 8.2 11.3 0.0 0.0 

0.1 123 180 204 15 11 12 17 9 2 3 30 6.6 10.6 0.0 0.0 

0.01 59 92 107 20 19 8 13 8 1 4 25 6.0 7.2 0.0 0.0 

0.001 29 39 70 17 17 20 11 0 0 17 17 2.2 8.7 0.0 0.0 

C2. 5- min frequency futures and options prices with monthly out-of-the-money options prices 

1 166 374 322 29 10 8 21 7 1 2 23 10.1 9.8 0.0 0.7 

0.1 85 193 171 28 13 9 20 6 4 2 19 10.7 9.4 0.0 0.0 

0.01 48 107 105 26 12 11 21 5 2 5 19 10.6 10.6 0.0 0.0 

0.001 28 59 63 21 8 13 27 6 2 6 17 10.4 16.7 0.0 0.0 

The second, third and fourth columns show the number of detected jumps per 808 days.  
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Table 9 The estimated and selected parameters of affine jump-diffusion models 

Panel A 
Period Full sample period Low volatility High volatility 

Parameters SV SVJP SVJV SVIJ SVCJ SVCJ SVCJ 

   0.022 0.021 0.022 0.022 0.020 0.010 0.050 

  0.5% 11.9% 0.5% 14.3% 11.9% 6.2% 19.1% 

  4.65 6.25 7.15 7.25 7.25 7.25 7.05 

  0.020 0.007 0.003 0.004 0.004 0.004 0.010 

  0.51 0.50 0.47 0.45 0.45 0.45 0.46 

  -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 

   - 2300 - 2300 2300 2000 3000 

   - - 2300 2300 2300 2000 3000 

 (e-4) - -0.6 - -0.6 -0.6 -0.01 -1 

 (e-4) - 13.4 - 13.8 12.95 9.8 17.8 

  - - - - -0.06 -0.06 -0.03 

  
(e-4) - - 1600 1 0.02 0.01 0.2 

   4.4 6.0 6.9 7.0 7.0 7.0 6.8 

  (e-4) - -1.1 - -1.2 -1.1 -0.31 -1.6 

  (e-4) - 15.8 - 16.0 15.2 12.7 20.7 

   
(e-4) - - 1608 2 0.04 0.02 0.4 

Annual price jump 

risk premium 
- 11.4% - 13.7% 11.4% 5.9% 17.8% 

Note: price jump risk premium is              
 

Panel B The comparison of estimated and selected parameters with previous studies 
Time unit period             

(e-2) 

   
(e-2) 

    
(e-4) 

    

Pan year  7.1 0.013 0.28 -0.52 -0.3 3.25 - - 27.1 

Wang year  1.6 0.044 0.367 -0.64 -13.3 2.19 680 -0.47 0.25 

CGGT* year  3.6 0.206 0.272 -0.46 -1.52 1.73 181 -0.87 1.7 

Our estimation and simulation:         

Estimation year Full 7.0 0.004 0.45 -0.60 -0.37 1.77 319 -0.11 0.38 

  Low 7.0 0.004 0.45 -0.65 -0.24 2.63 1584 -0.11 0.16 

  High 6.8 0.010 0.46 -0.52 -0.37 1.66 83 -0.08 1.28 

Simulation year Full  7.0 0.004 0.45 -0.01 -0.0110 0.152 0.04 -0.06 2300 

  Low 7.0 0.004 0.45 -0.01 -0.0031 0.125 0.20 -0.06 2000 

  High 6.8 0.010 0.46 -0.01 -0.0160 0.207 0.40 -0.03 3000 

EJP* day  0.026 0.54 

e-4 

0.08 

e-2 

-0.48 -1.75 2.89 1.48 -0.60 0.006 

Eraker day  0.023 1.353 

e-4  

0.163 

e-2 

-0.58 -6.1 3.63 1.63 -0.69 0.002 

The parameters are estimated with daily or yearly time unit by Pan (2002),Eraker, Johannes, and Polson (EJP; 

2003), CGGT (2003), Eraker(2004), and Wang (2009).Our estimationparametersarethe medians of estimated 

parameters by minimizing squared pricing error between theoretical prices by Duffie, Pan, and Singleton (2000) 

and the 7-min frequency market prices. The simulation parameters are equal to these parameters Panels A, 

which are applied to simulate model-based results in Tables 10-13. 

*: the parameters of CGGT (2003) and EJP (2003) are estimated from   measure; others are under Q measure. 
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Table 10 Stochastic volatility (SV) model and Stochastic volatility with jump in price(SVJP) 

model in full sample period 

  

(%) 

# of Det. Jumps 

per 808 days 

Percentages of Jump Combinations Percentages of Jump 

Combinations 

F C P C P

+ 

P 

－ 

CP F FC FP FCP CP 

+－ 

CP 

－+ 

CP 

+ + 

CP 

－－ 

A. SVmodel result  

1 12.3 13.0 13.1 28 15 15 0 15 13 10 4 0.0 0.0 0.0 0.0 

0.1 1.6 1.8 1.7 30 16 15 0 17 11 9 2 0.0 0.0 0.0 0.0 

0.01 0.2 0.3 0.3 31 16 14 0 22 6 8 3 0.0 0.0 0.0 0.0 

0.001 0.04 0.02 0.05 17 17 22 0 35 0 4 4 0.0 0.0 0.0 0.0 

B1. empirical result      

1 306 431 423 22 10 11 11 10 5 4 27 4.9  5.7  0.3 0.1  

0.1 150 217 228 22 12 12 11 6 6 6 26 4.7  5.3  0.3 0.3  

0.01 79 128 127 24 11 12 11 5 5 5 26 5.7  4.7  0.0 0.5  

0.001 45 65 90 18 17 16 12 5 3 9 20 8.2  4.1  0.0 0.0  

B2. SVJP model result 

1 310 448 425 20 8 9 8 0.5 4 3 47 3.5 4.3 0.0 0.0 

0.1 165 257 248 22 10 10 9 0.3 4 3 43 4.2 4.8 0.0 0.0 

0.01 96 157 149 23 10 10 10 0.2 3 3 41 4.2 5.5 0.0 0.0 

0.001 57 99 94 24 12 9 11 0.2 3 2 38 4.5 6.1 0.0 0.0 

B3. SVJP model result with constraint: no price jump risk premium:       -0.6e-4,      13.4e-4 

1 310 275 263 10 5 5 0.3 6 16 13 44 0.1 0.1 0.0 0.0 

0.1 165 144 138 10 5 4 0.2 8 16 13 43 0.1 0.1 0.0 0.0 

0.01 96 82 78 11 5 4 0.4 8 16 15 41 0.2 0.2 0.0 0.0 

0.001 57 49 46 11 5 4 0.3 10 16 13 40 0.1 0.2 0.0 0.0 

B4. Result with estimated parameters from Pan(2002) in panel B of Table 9 

1 91 92 89 5 1.9 1.9 0 1.4 4 2 83 0.0 0.0 0.0 0.0 

0.1 81 82 79 2 0.3 0.3 0 0.4 2 0 95 0.0 0.0 0.0 0.0 

0.01 79 79 77 1 0.1 0.1 0 0.1 2 0 97 0.0 0.0 0.0 0.0 

0.001 78 78 76 1 0.1 0.0 0 0.0 2 0 97 0.0 0.0 0.0 0.0 
Note: the  PanelsA and B4 are the simulation results from 200,000 and 60,000 simulation days, respectively, and others are from 

30,000 simulation days. 
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Table 11 Stochastic volatility with jump in volatility (SVJV)modelandStochastic volatility 

with independent jumps in price and in volatility (SVIJ) model in full sample period 

 

  

(%) 

# of Det. Jumps 

per 808 days 

Percentages of Jump Combinations Percentage of Jumps 

Combinations 

F C P C P

+ 

P 

－ 

CP F FC FP FCP CP 

+－ 

CP 

－+ 

CP 

+ + 

CP 

－－ 

A1. empirical result      

1 306 431 423 22 10 11 11 10 5 4 27 4.9  5.7  0.3 0.1  

0.1 150 217 228 22 12 12 11 6 6 6 26 4.7  5.3  0.3 0.3  

0.01 79 128 127 24 11 12 11 5 5 5 26 5.7  4.7  0.0 0.5  

0.001 45 65 90 18 17 16 12 5 3 9 20 8.2  4.1  0.0 0.0  

A2. SVJV model result 

1 159 203 417 11 55 0.8 4 4 8 3 15 0.0 0.0 4.0 0.0 

0.1 54 85 237 11 66 0.5 4 3 6 2 8 0.0 0.0 4.1 0.0 

0.01 21 40 150 10 74 0.4 4 3 4 1 4 0.0 0.0 4.0 0.0 

0.001 9 21 101 9 79 0.1 4 2 3 1 2 0.0 0.0 3.8 0.0 

A3. SVJV model result with constraint: no volatility price jump risk premium:        0.16 

1 159 202 416 11 55 0.8 4 4 8 3 15 0.0 0.0 3.9 0.0 

0.1 54 84 235 11 66 0.6 4 3 6 2 8 0.0 0.0 3.9 0.0 

0.01 21 39 147 10 74 0.3 4 2 4 1 4 0.0 0.0 3.9 0.0 

0.001 9 21 99 9 79 0.1 4 2 3 1 2 0.0 0.0 3.6 0.0 

B2. SVIJ model result 

1 309 437 430 17 8 8 9 0.2 2 2 53 4.5 5.0 0.0 0.0 

0.1 163 250 245 19 9 9 11 0.1 2 2 49 4.8 5.8 0.0 0.0 

0.01 93 151 146 20 9 8 13 0.0 2 1 47 5.6 6.9 0.0 0.0 

0.001 56 94 91 22 10 9 12 0.0 1 1 44 5.4 6.5 0.0 0.0 
Note: the simulation results are from 30,000 simulation days. 
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Table 12 Stochastic volatility with contemporaneous jumps in price and in volatility (SVCJ) model 

  

(%) 

# of Det. Jumps 

per 808 days 

Percentages of Jump Combinations Percentages of Jump 

Combinations 

F C P C P

+ 

P 

－ 

CP F FC FP FCP CP 

+－ 

CP 

－+ 

CP 

+ + 

CP 

－－ 

A1. empirical result of full sample period     

1 306 431 423 22 10 11 11 10 5 4 27 4.9  5.7  0.3 0.1  

0.1 150 217 228 22 12 12 11 6 6 6 26 4.7  5.3  0.3 0.3  

0.01 79 128 127 24 11 12 11 5 5 5 26 5.7  4.7  0.0 0.5  

0.001 45 65 90 18 17 16 12 5 3 9 20 8.2  4.1  0.0 0.0  

A2. model result 

1 306 441 426 19 9 9 8 0.4 4 3 49 3.6 4.7 0.0 0.0 

0.1 163 257 245 21 9 9 10 0.1 3 2 44 4.3 5.7 0.0 0.0 

0.01 93 156 148 23 11 10 10 0.1 3 2 42 4.6 5.4 0.0 0.0 

0.001 56 99 94 24 11 10 11 0.2 3 2 39 5.2 5.8 0.0 0.0 

A3. constraint: only consider price jump risk premium:        0.02e-4 

1 306 441 425 19 9 9 8 0.4 4 3 48 3.6 4.6 0.0 0.0 

0.1 163 257 245 21 9 9 10 0.1 3 2 44 4.3 5.7 0.0 0.0 

0.01 93 156 148 23 11 10 10 0.1 3 2 42 4.6 5.4 0.0 0.0 

0.001 56 99 94 24 11 10 11 0.2 3 2 38 5.3 5.8 0.0 0.0 

A4. constraint: only consider volatility jump risk premium:       0.6e-4,      12.95e-4 

1 305 274 266 10 5 5 0.2 5 15 13 47 0.1 0.1 0.0 0.0 

0.1 163 147 139 11 5 5 0.2 7 15 12 45 0.1 0.1 0.0 0.0 

0.01 93 83 78 11 5 5 0.3 7 16 13 42 0.1 0.1 0.0 0.0 

0.001 56 50 46 11 4 5 0.3 8 16 13 42 0.2 0.2 0.0 0.0 

A5. constraint: no price jump risk premium and no volatility jump risk premium 

1 305 274 266 10 5 5 0.2 5 15 13 47 0.1 0.1 0.0 0.0 

0.1 163 147 139 11 5 5 0.2 7 15 12 45 0.1 0.1 0.0 0.0 

0.01 93 83 78 11 5 5 0.3 7 16 13 42 0.1 0.1 0.0 0.0 

0.001 56 50 46 11 4 5 0.3 8 16 13 42 0.2 0.2 0.0 0.0 

A6. result with our estimated parameters frompanel Bof Table 9  

1 13 14 15 26 14 16 1 13 13 11 7 0.0 0.1 0.6 0.0 

0.1 2 3 3 23 14 13 4 13 9 9 15 0.0 0.0 3.6 0.0 

0.01 1 1 1 14 8 3 11 7 8 10 38 0.0 0.0 11.2 0.0 

0.001 1 1 1 4 4 0 18 2 7 14 51 0.0 0.0 18.2 0.0 

B1. empirical result of low volatility period 

1 324 528 519 27 13 14 8 6 7 6 19 3.6 4.1 0.3 0.3 

0.1 149 252 250 31 14 15 6 7 5 6 17 2.5 3.0 0.0 0.0 

0.01 61 136 145 33 17 15 9 3 3 8 12 4.6 4.6 0.0 0.0 

0.001 39 74 94 31 22 15 6 4 1 9 12 4.4 1.5 0.0 0.0 

B2. model result 

1 333 556 523 22 9 9 12 0.6 3 2 42 5.6 5.7 0.0 0.0 

0.1 187 349 322 25 10 10 14 0.2 3 1 38 6.6 6.4 0.0 0.0 

0.01 110 223 203 26 10 10 15 0.1 2 1 35 6.9 7.1 0.0 0.0 

0.001 68 149 133 28 11 10 16 0.2 2 1 32 7.7 7.2 0.0 0.0 

C1. empirical result of high volatility period 

1 252 364 396 15 10 9 20 9 2 5 31 8.2 11.3 0.0 0.0 

0.1 123 180 204 15 11 12 17 9 2 3 30 6.6 10.6 0.0 0.0 

0.01 59 92 107 20 19 8 13 8 1 4 25 6.0 7.2 0.0 0.0 

0.001 29 39 70 17 17 20 11 0 0 17 17 2.2 8.7 0.0 0.0 

C2. model result 

1 242 371 366 18 9 8 12 0.5 2 1 49 5.3 6.0 0.0 0.0 

0.1 121 203 197 20 10 8 14 0.2 1 1 45 6.0 6.7 0.0 0.0 

0.01 66 117 115 21 11 9 14 0.2 1 1 43 6.0 7.2 0.0 0.0 

0.001 40 71 70 20 12 8 16 0.2 1 1 43 7.0 7.5 0.0 0.0 
Note: the  Panel A6 is the simulation result  from 100,000 simulation days and others are from 30,000 simulation days. 

  



43 

 

Table 13 The results of different selected parameters of SVCJ model in full sample period 
# of Det. Jumps/ 808 days Percentages of Jump Combinations 

  

(%) 
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CP 

－+ 

CP 

++ 
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+ 
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－ 

FC 

 

FP 

 

FCP 

++－ 

FCP 

－－+ 

FCP 

+++ 

A1. empirical result    

1 306 431 423 10 12 10 11 5 6 0.3 5 5 5 4 12 15 0.0 

.1 150 217 228 10 12 12 12 5 5 0.3 2 4 6 6 13 13 0.0 

.01 79 128 127 13 11 11 12 6 5 0.0 3 2 5 5 12 14 0.0 

.001 45 65 90 8 10 17 16 8 4 0.0 5 0 3 9 8 11 0.0 

A2. model result with parameters in panel A of Table 9   

1 306 441 426 9 11 9 9 4 5 0.0 0.2 0.2 4 3 22 26 0.0 

.1 163 257 245 10 12 9 9 4 6 0.0 0.1 0.1 3 2 20 24 0.0 

.01 93 156 148 11 13 11 10 5 5 0.0 0.1 0.0 3 2 19 23 0.0 

.001 56 99 94 10 14 11 10 5 6 0.0 0.1 0.1 3 2 17 21 0.0 

Case 1.  decreases to -0.6   

1 304 680 274 22 29 1 1 2 1 0.0 0 0 9 0 15 19 0.0 

.1 166 431 146 25 32 1 1 1 2 0.0 0 0 9 0 12 16 0.0 

.01 94 279 81 26 37 1 0 2 2 0.0 0 0 9 0 10 14 0.0 

.001 55 191 48 28 39 1 1 1 2 0.0 0 0 8 0 8 12 0.0 

Case 2.  decreases to -36.5e-4;      0.5e-4   

1 2573 3317 3238 0 10 8 0 0 11 0.0 0 0 1 1 0.0 10.9 0.0 

.1 1760 2485 2395 0 14 10 0 0 13 0.0 0 0 1 1 0.0 13.3 0.0 

.01 1198 1833 1746 0 16 12 0 0 15 0.0 0 0 1 1 0.0 14.7 0.0 

.001 804 1340 1268 0 18 14 0 0 17 0.0 0 0 1 1 0.0 16.7 0.0 

Case 3.  increases to 174.75e-4;       2.25e-4   

1 5027 5028 5028 0 0 0 1 0 0 0.0 0 0 1 1 48 48 0.0 

.1 4760 4763 4761 0 1 0 1 0 0 0.0 0 0 1 1 48 48 0.0 

.01 4526 4526 4526 0 1 1 1 0 0 0.0 0 0 1 1 47 48 0.0 

.001 4314 4315 4314 1 1 1 1 0 0 0.0 0 0 1 1 47 47 0.0 

Case 4.   decreases to -0.11   

1 302 436 425 9 11 9 9 4 4 0.0 0 0 3 3 21 27 0.0 

.1 162 259 243 10 13 10 8 4 6 0.0 0 0 3 2 19 24 0.0 

.01 92 156 149 10 13 11 9 5 6 0.0 0 0 3 2 18 23 0.0 

.001 58 100 95 11 13 12 9 5 6 0.0 0 0 2 2 17 24 0.0 

Case 5.   increases to 318.98e-4;        0.02e-4   

1 283 152 1021 1 2 71 0 0 0 0.0 0 0 3 15 2 6 0.0 

.1 141 53 751 1 1 80 0 0 0 0.0 0 0 1 13 1 3 0.0 

.01 80 22 574 0 0 85 0 0 0 0.0 0 0 1 11 0 2 0.0 

.001 51 10 450 0 0 88 0 0 0 0.0 0 0 0 10 0 1 0.0 

Case 6.    decreases to -37e-4   

1 302 291 335 18 1 25 1 0.8 0.6 0.2 4 5 12 13 8 12 0.0 

.1 162 152 181 19 0 27 0 0.3 0.5 0.3 5 6 12 13 7 11 0.0 

.01 92 86 107 19 0 29 0 0.2 0.3 0.3 5 6 11 13 6 10 0.0 

.001 58 50 66 18 0 29 0 0.4 0.2 0.3 5 6 12 14 6 9 0.0 

Case 7.    increases to 177e-4   

1 302 5029 5024 1 1 1 1 43 47 0.0 0 0 0 0 3 3 0.0 

.1 163 4766 4765 1 1 1 1 44 48 0.0 0 0 0 0 1 2 0.0 

.01 92 4526 4522 1 1 1 1 44 49 0.0 0 0 0 0 1 1 0.0 

.001 58 4311 4309 1 2 1 1 44 49 0.0 0 0 0 0 1 1 0.0 

Case 8.    increases to 319e-4   

1 302 215 326 13 3 28 2 4 3 2.3 14 16 5 8 1 1 0.0 

.1 162 92 170 13 1 33 1 2 2 2.3 15 18 4 7 0 1 0.0 

.01 92 48 101 14 1 37 1 1 1 2.1 16 18 4 6 0 1 0.0 

.001 58 26 64 13 0 39 0 0 1 1.8 15 19 3 6 0 0 0.0 
Note: the simulation results are from 10,000 simulation days. 


